
Hamming It Up with
Hamming Codes
CSE 461
Section Week 3

Error Detection/Correction

 We want to know when there are errors in
communication

 Correcting errors would be even better! Why?

 It’d save lots of time

 What are some ways we can correct errors?

 Send data multiple times

 Send longer symbols

 Send data with the payload that’s a function of the payload

 E.g., parity bits

Parity Bits

Problem

We want to send 1101

 Last bit gets flipped

 1100 is sent instead

How can we detect this?

 Add another bit at the end: the sum (without carry) of
all the bits

 So instead of 1101 we send…

 11011

 If 11001 is received, we know that it’s wrong—how?

 The parity bit for 1100 should be 0, but it’s not…

something was flipped!

 Even and odd parity

Error Detection/Correction

 Parity bits don’t let us correct errors (by themselves)

 Can we do any better?

 What’s the best way to detect and correct?

Hamming Codes: Background

 Richard Hamming

 Worked at Bell Labs

 Developed Hamming Codes to save time on
punchcard reading errors

 Mixed message bits and parity bits to detect and correct
specific errors

 Hamming codes now used for network communications
as well as hard drive RAIDs

Hamming Codes: How They Work

00100101100

Bits in 1, 2, 4, 8, etc. positions are parity bits

All other bits are message bits

Hamming Codes: How They Work

• We want to send 1011100
• We put its message bits into the non-2n

places, like so:

? ? 1 ? 0 1 1 ? 1 0 0

P1 p2 m3 p4 m5 m6 m7 p8 m9 m10 m11

Hamming Codes: How They Work

? ? 1 ? 0 1 1 ? 1 0 0

• Each message bit is added to the parity
bits that sum up to that message bit’s place

• For m3, 3 = 2 + 1, so we add to p1 and p2

P1 p2 m3 p4 m5 m6 m7 p8 m9 m10 m11

+1 +1

Hamming Codes: How They Work

? ? 1 ? 0 1 1 ? 1 0 0

• For m5, 5 = 4 + 1, so we add to p4 and p1

• But m5 = 0, so we don’t add anything

P1 p2 m3 p4 m5 m6 m7 p8 m9 m10 m11

+1 +1

Hamming Codes: How They Work

? ? 1 ? 0 1 1 ? 1 0 0

• For m6, 6 = 4 + 2, so we add to p4 and p2

P1 p2 m3 p4 m5 m6 m7 p8 m9 m10 m11

+1 +1

+1

+1

Hamming Codes: How They Work

? ? 1 ? 0 1 1 ? 1 0 0

• For m7, 7 = 4 + 2 + 1, so we add to p4,
p2 and p1

P1 p2 m3 p4 m5 m6 m7 p8 m9 m10 m11

+1 +1

+1

+1

+1

+1

+1

Hamming Codes: How They Work

? ? 1 ? 0 1 1 ? 1 0 0

• What would we do for m9?
• 9 = 8 + 1, so we add to p8 and p1

P1 p2 m3 p4 m5 m6 m7 p8 m9 m10 m11

+1 +1

+1

+1

+1

+1

+1

+1

+1

Hamming Codes: How They Work

? ? 1 ? 0 1 1 ? 1 0 0

• What would we do for m10?
• 10 = 8 + 2, so we add to p8 and p2

• But m10 = 0, so we don’t add anything

P1 p2 m3 p4 m5 m6 m7 p8 m9 m10 m11

+1 +1

+1

+1

+1

+1

+1

+1

+1

Hamming Codes: How They Work

? ? 1 ? 0 1 1 ? 1 0 0

• What would we do for m11?
• 11 = 8 + 2 + 1, so we add to p8,

p2 and p1

• But m11 = 0, so we don’t add anything

P1 p2 m3 p4 m5 m6 m7 p8 m9 m10 m11

+1 +1

+1

+1

+1

+1

+1

+1

+1

Hamming Codes: How They Work

? ? 1 ? 0 1 1 ? 1 0 0

• Now we add up all of the parity bits
• What would each one be? (Even parity)

P1 p2 m3 p4 m5 m6 m7 p8 m9 m10 m11

+1 +1

+1

+1

+1

+1

+1

+1

+1

Hamming Codes: How They Work

1 ? 1 ? 0 1 1 ? 1 0 0

• Now we add up all of the parity bits
• What would each one be? (Even parity)

P1 p2 m3 p4 m5 m6 m7 p8 m9 m10 m11

+1 +1

+1

+1

+1

+1

+1

+1

+1

Hamming Codes: How They Work

1 1 1 ? 0 1 1 ? 1 0 0

• Now we add up all of the parity bits
• What would each one be? (Even parity)

P1 p2 m3 p4 m5 m6 m7 p8 m9 m10 m11

+1 +1

+1

+1

+1

+1

+1

+1

+1

Hamming Codes: How They Work

1 1 1 0 0 1 1 ? 1 0 0

• Now we add up all of the parity bits
• What would each one be? (Even parity)

P1 p2 m3 p4 m5 m6 m7 p8 m9 m10 m11

+1 +1

+1

+1

+1

+1

+1

+1

+1

Hamming Codes: How They Work

1 1 1 0 0 1 1 1 1 0 0

• Now we add up all of the parity bits
• What would each one be? (Even parity)

P1 p2 m3 p4 m5 m6 m7 p8 m9 m10 m11

+1 +1

+1

+1

+1

+1

+1

+1

+1

Hamming Codes

 So we get 11100111100 as our bit string to send

 The receiver can recalculate the parity bits and
make sure they match

Error Syndromes

The sender sent

11100111100

but what if we received

11000111100 ?

Can we correct this?

Error Syndromes

1 1 0 0 0 1 1 1 1 0 0

P1 p2 m3 p4 m5 m6 m7 p8 m9 m10 m11

Recalculate parity bits and you get the numbers in blue:

0 0 0 1

(We know there’s an error because we didn’t get 1101)

Error Syndromes

1 1 0 0 0 1 1 1 1 0 0

P1 p2 m3 p4 m5 m6 m7 p8 m9 m10 m11

Add calculated parity bits to parity bits in received data:

0 0 0 1

=1 =1 =0 =0

Then reverse the sum and it will tell you the bit in error:
0011 -> third bit is wrong!

Now, you try! Decode this ASCII
message (0b1000001 = 65 = ‘A’)

1011 0101 000

1111 0011 001

1100 0001 111

There may be bit errors!
Assume each line encodes
one byte of message data.
(I.e., pad with a leading zero.)

1011 0101 000

1111 0011 001

1100 0001 111

Answers

1011 0100 000

1111 0011 001

1110 0001 111

Correct
errors

Extract message bits

1010 000

1001 001

1000 111

Convert to ASCII

PIG

