Hamming It Up with Hamming Codes

CSE 461

Section Week 3

Error Detection/Correction

- We want to know when there are errors in communication
- Correcting errors would be even better! Why?
- It'd save lots of time
- What are some ways we can correct errors?
- Send data multiple times
- Send longer symbols
- Send data with the payload that's a function of the payload O E.g., parity bits

Parity Bits

o Problem
O We want to send 1101

- Last bit gets flipped

- 1100 is sent instead

O How can we detect this?
O Add another bit at the end: the sum (without carry) of all the bits

- So instead of 1101 we send...

011011
O If 11001 is received, we know that it's wrong-how?
O The parity bit for 1100 should be 0 , but it's not... something was flipped!

- Even and odd parity

Error Detection/Correction

- Parity bits don't let us correct errors (by themselves)
- Can we do any better?
- What's the best way to detect and correct?

Hamming Codes: Background

- Richard Hamming
- Worked at Bell Labs
- Developed Hamming Codes to save time on punchcard reading errors

O Mixed message bits and parity bits to detect and correct specific errors

- Hamming codes now used for network communications as well as hard drive RAIDs

Hamming Codes: How They Work

All other bits are message bits

Bits in 1, 2, 4, 8, etc. positions are parity bits

Hamming Codes: How They Work

- We want to send 1011100
- We put its message bits into the non -2n places, like so:

$$
\begin{array}{ccccccccccc}
? & ? & 1 & ? & 0 & 1 & 1 & ? & 1 & 0 & 0 \\
P_{1} & p_{2} & m_{3} & p_{4} & m_{5} & m_{6} & m_{7} & p_{8} & m_{9} & m_{10} & m_{11}
\end{array}
$$

Hamming Codes: How They Work

- Each message bit is added to the parity bits that sum up to that message bit's place
- For $m_{3}, 3=2+1$, so we add to p_{1} and p_{2}

$$
\begin{array}{ccccccccccc}
+1 & +1 & 1 & ? & 0 & 1 & ? & 1 & 0 & 0 \\
? & ? & 1 & ? & 0 & 1 & & \\
P_{1} & p_{2} & m_{3} & p_{4} & m_{5} & m_{6} & m_{7} & p_{8} & m_{9} & m_{10} & m_{11}
\end{array}
$$

Hamming Codes: How They Work

- For $m_{5}, 5=4+1$, so we add to p_{4} and p_{1}
- But $m_{5}=0$, so we don't add anything

$$
\begin{array}{ccccccccccc}
+1 & +1 & & 1 & \\
? & ? & 1 & ? & 0 & 1 & 1 & ? & 1 & 0 & 0 \\
\mathrm{P}_{1} & \mathrm{p}_{2} & m_{3} & \mathrm{p}_{4} & m_{5} & m_{6} & m_{7} & \mathrm{p}_{8} & m_{9} & m_{10} & m_{11}
\end{array}
$$

Hamming Codes: How They Work

- For $m_{6}, 6=4+2$, so we add to p_{4} and p_{2}

$$
\begin{array}{ccccccccccc}
& +1 & & & & & & & & & \\
+1 & +1 & & +1 & & & & & & \\
? & ? & 1 & ? & 0 & 1 & 1 & ? & 1 & 0 & 0 \\
\mathrm{P}_{1} & \mathrm{p}_{2} & \mathrm{~m}_{3} & \mathrm{p}_{4} & \mathrm{~m}_{5} & \mathrm{~m}_{6} & \mathrm{~m}_{7} & \mathrm{p}_{8} & \mathrm{~m}_{9} & \mathrm{~m}_{10} & \mathrm{~m}_{11}
\end{array}
$$

Hamming Codes: How They Work

- For $m_{7}, 7=4+2+1$, so we add to p_{4}, p_{2} and p_{1}

$$
+1
$$

$$
+1+1 \quad+1
$$

$$
+1+1 \quad+1
$$

$$
\begin{array}{lllllllllllll}
P_{1} & p_{2} & m_{3} & p_{4} & m_{5} & m_{6} & m_{7} & p_{8} & m_{9} & m_{10} & m_{11}
\end{array}
$$

Hamming Codes: How They Work

-What would we do for m_{9} ?

- $9=8+1$, so we add to p_{8} and p_{1}

$$
\left.\begin{array}{cccccccccc}
+1 & +1 & & & & & & & & \\
+1 & +1 & & +1 & & & & & & \\
+1 & +1 & & +1 & & & & +1 & & \\
\text { + } & ? & 1 & ? & 0 & 1 & 1 & ? & 1 & 0
\end{array}\right) 0
$$

Hamming Codes: How They Work

- What would we do for m_{10} ?
- $10=8+2$, so we add to p_{8} and p_{2}
- But $\mathrm{m}_{10}=0$, so we don't add anything

$$
\begin{array}{ccccccccccc}
+1 & +1 & & & & & & & & & \\
+1 & +1 & & +1 & & & & & & & \\
+1 & +1 & & +1 & & & & +1 & & & \\
? & ? & 1 & ? & 0 & 1 & 1 & ? & 1 & 0 & 0 \\
\mathrm{P}_{1} & \mathrm{p}_{2} & \mathrm{~m}_{3} & \mathrm{p}_{4} & \mathrm{~m}_{5} & \mathrm{~m}_{6} & \mathrm{~m}_{7} & \mathrm{p}_{8} & \mathrm{~m}_{9} & \mathrm{~m}_{10} & \mathrm{~m}_{11}
\end{array}
$$

Hamming Codes: How They Work

- What would we do for m_{11} ?
- $11=8+2+1$, so we add to p_{8}, p_{2} and p_{1}
- But $\mathrm{m}_{11}=0$, so we don't add anything

$$
\left.\begin{array}{rrrrrrrrrr}
+1 & +1 & & & & & & & & \\
+1 & +1 & & +1 & & & & & & \\
+1 & +1 & & +1 & & & & +1 & & \\
? & ? & 1 & ? & 0 & 1 & 1 & ? & 1 & 0
\end{array}\right) 0
$$

Hamming Codes: How They Work

- Now we add up all of the parity bits
- What would each one be? (Even parity)

$$
\left.\begin{array}{rrrrrrrrrr}
+1 & +1 & & & & & & & & \\
+1 & +1 & & +1 & & & & & & \\
+1 & +1 & & +1 & & & & +1 & & \\
? & ? & 1 & ? & 0 & 1 & 1 & ? & 1 & 0
\end{array}\right) 0
$$

Hamming Codes: How They Work

- Now we add up all of the parity bits
- What would each one be? (Even parity)

$$
\begin{array}{ccccccccccc}
+1 & +1 & & & & & & & & & \\
+1 & +1 & & +1 & & & & & & & \\
+1 & +1 & & +1 & & & & +1 & & & \\
1 & ? & 1 & ? & 0 & 1 & 1 & ? & 1 & 0 & 0 \\
\mathrm{P}_{1} & \mathrm{p}_{2} & \mathrm{~m}_{3} & \mathrm{p}_{4} & \mathrm{~m}_{5} & \mathrm{~m}_{6} & \mathrm{~m}_{7} & \mathrm{p}_{8} & \mathrm{~m}_{9} & \mathrm{~m}_{10} & \mathrm{~m}_{11}
\end{array}
$$

Hamming Codes: How They Work

- Now we add up all of the parity bits
- What would each one be? (Even parity)

$$
\begin{array}{ccccccccccc}
+1 & +1 & & & & & & & & & \\
+1 & +1 & & +1 & & & & & & & \\
+1 & +1 & & +1 & & & & +1 & & & \\
1 & 1 & 1 & ? & 0 & 1 & 1 & ? & 1 & 0 & 0 \\
\mathrm{P}_{1} & \mathrm{p}_{2} & \mathrm{~m}_{3} & \mathrm{p}_{4} & \mathrm{~m}_{5} & \mathrm{~m}_{6} & \mathrm{~m}_{7} & \mathrm{p}_{8} & \mathrm{~m}_{9} & \mathrm{~m}_{10} & \mathrm{~m}_{11}
\end{array}
$$

Hamming Codes: How They Work

- Now we add up all of the parity bits
- What would each one be? (Even parity)

$$
\begin{array}{ccccccccccc}
+1 & +1 & & & & & & & & & \\
+1 & +1 & & +1 & & & & & & & \\
+1 & +1 & & +1 & & & & +1 & & & \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & ? & 1 & 0 & 0 \\
\mathrm{P}_{1} & \mathrm{p}_{2} & \mathrm{~m}_{3} & \mathrm{p}_{4} & \mathrm{~m}_{5} & \mathrm{~m}_{6} & \mathrm{~m}_{7} & \mathrm{p}_{8} & \mathrm{~m}_{9} & \mathrm{~m}_{10} & \mathrm{~m}_{11}
\end{array}
$$

Hamming Codes: How They Work

- Now we add up all of the parity bits
- What would each one be? (Even parity)

$$
\begin{array}{ccccccccccc}
+1 & +1 & & & & & & & & & \\
+1 & +1 & & +1 & & & & & & & \\
+1 & +1 & & +1 & & & & +1 & & & \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
\mathrm{P}_{1} & \mathrm{p}_{2} & \mathrm{~m}_{3} & \mathrm{p}_{4} & \mathrm{~m}_{5} & \mathrm{~m}_{6} & \mathrm{~m}_{7} & \mathrm{p}_{8} & \mathrm{~m}_{9} & \mathrm{~m}_{10} & \mathrm{~m}_{11}
\end{array}
$$

Hamming Codes

- So we get 11100111100 as our bit string to send
- The receiver can recalculate the parity bits and make sure they match

Error Syndromes

The sender sent

11100111100

but what if we received

11000111100 ?

Can we correct this?

Error Syndromes

Recalculate parity bits and you get the numbers in blue:

$$
\begin{array}{cccccccccccc}
0 & 0 & & 0 & & c & 1 & & & \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
P_{1} & p_{2} & m_{3} & p_{4} & m_{5} & m_{6} & m_{7} & p_{8} & m_{9} & m_{10} & m_{11}
\end{array}
$$

(We know there's an error because we didn't get 1101)

Error Syndromes

Add calculated parity bits to parity bits in received data:

$$
\begin{array}{cccccccccccc}
=1 & =1 & =0 & & c c c c c c \\
0 & 0 & & 0 & & & & 1 & & & \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
P_{1} & p_{2} & m_{3} & p_{4} & m_{5} & m_{6} & m_{7} & p_{8} & m_{9} & m_{10} & m_{11}
\end{array}
$$

Then reverse the sum and it will tell you the bit in error: 0011 -> third bit is wrong!

Now, you try! Decode this ASCII message (0b1000001 = $65=$ ' A^{\prime})

There may be bit errors! Assume each line encodes one byte of message data.
(I.e., pad with a leading zero.)

11110011001

 11000001111

Answers

10110101000

10110100000
Correct errors
$11110011001 \longrightarrow 11110011001$
11000001111 11100001111

Extract message bits

s

1010000
1001001 1000111

